
SNEWS Word Problems

Note to teachers: I have not been explicit with the “significant figures” in these calcula-
tions. Astronomical measurements are frequently imprecise: we might be happy to measure
a star’s mass to within five solar masses, for example. In constructing these problems, I have
opted to stress concepts, rather than arithmetic. I would advise grading on a partial credit
system, giving several points to a student if he or she can manipulate the necessary equation
in the proper way, even if the arithmetic in the end has a mistake or two. If “sig figs” are a
large part of your curriculum (as I know they were in my day), you may wish to grade them
more heavily.

1 Exercise Solutions

Problem 1: How Big is a Neutrino Detector?

(a) We can find the volume with a little dimensional analysis, a good exercise in scientific
notation:

50 kilotons =
106 kg

1 kiloton
× 1 L

1 kg
× 1 m3

103 L

= 5× 101 × 106 × 10−3 m3

= 5× 104 m3.

“To a first approximation”, as the scientists say, we guess that the tank is cubic.
Therefore, to find the length of its side, we take the cube root:

a =
3
√

5× 104 m3 ≈ 36.8 m. (1)

Problem 2: How Strong is the Signal?

All the parts of this problem can be solved using the given equation for intensity:

I(R) = I0

(
R0

R

)2

. (2)
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(a) Here, we’re told that I0 = 1 J
m2s

, that R0 = 10m and that we wish to know the intensity
at R = 30m. Plug the distances we know into the equation:

I(30 m) = I0

(
10 m

30 m

)2

= I0

(
1

3

)2

=
I0

9

=
1

9

J

m2s
,

or in decimal form,

I(30 m) ≈ 0.11
J

m2s
. (3)

(b) This part may be a little trickier, because we’re not told what I0 is. However, knowing
algebra means we don’t have to know I0. What we are told is that

I(R) =
1

100
I0. (4)

We can plug this information into the intensity equation, like so:

I(R) = I0

(
R0

R

)2

=
1

100
I0. (5)

Whatever I0 is, it is surely a number greater than zero (otherwise, the supernova would
be invisible!). Therefore, we can divide both sides by the unknown quantity:(

R0

R

)2

=
1

100
. (6)

Taking the square root of both sides, we find that

R0

R
=

1

10
. (7)

Cross-multiplying now shows that

R = 10R0 = 10 megaparsecs. (8)

Problem 3: Temperature Scales

The key formula here is

K = C + 273.15 =
F + 459.67

1.8
. (9)
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(a) Well, there’s no guarantee exactly what you find a comfortable room temperature, but
lots of people seem to agree on around 72◦F. In kelvins, this is

72 + 459.67

1.8
≈ 295.4K. (10)

Subtract 273.15 K to get the Celsius equivalent temperature, about 22◦C.

(b) Again, just subtract 273.15 K:

5500◦C − 273.15◦C = 5226.85 K. (11)

Problem 4: Stellar Masses

Over the last several decades, scientists have discovered that the mass of a star is the
single most important factor in determining how long it will “live” and in what fashion it
will “die”. Frequently, masses for distant stars are given as multiples of our Sun’s mass.

(a) First, we multiply the mass of the sun (given in the data table) by 15:

15MSun ≈ 2.98× 1031 kg. (12)

This answers part (i); to solve part (ii), divide the previous result by the mass of the
Earth:

2.98× 1031kg × 1MEarth

5.9736× 1034 kg
≈ 5.0× 106MEarth. (13)

(b) 70 Jupiter masses is about 1.33 × 1029 kg. Dividing this by MSun (the same value we
used in part (a)) shows that 70 Jupiter masses is about 0.067 solar masses.

Problem 6: Half-Lives

Here, all the problems can be solved using the half-life decay equation,

N(t) = N0 ·
(

1

2

)t/τ

. (14)

It may be a useful hint to know that N(t) and N0 can be in any units we wish: grams,
atoms, moles, etc. If we measure N0 in grams, N(t) will be in grams. Likewise, as long as t
and τ are in the same units—seconds, years, or what have you—we don’t need to be picky
about what units to use. It is not necessary to convert everything to seconds first!

(a) Radium decay. We’re told that the decay process for radium obeys the rule

226Ra →4 He +222 Rn. (15)
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Here, τ = 1602 years, and we’re told that the time period t is 1000 years. Any decent
calculator can handle the tough work:

N(t) = 10 g ·
(

1

2

) 1000
1602

≈ 6.49 g. (16)

Radioactive decay “burns up” 3.51 g of radium, leaving 6.49 g behind. (Remember,
this process takes a thousand years!) A little chemistry can tell us how much radon
is released. We know that every atom of radium which decays releases one atom of
radon, and the Periodic Table informs us that one mole of radium has a mass of
226.0254 grams. Furthermore, at “standard temperature and pressure” (273.15 K and
1 atmosphere), one mole of any gas takes up 22.4 liters of space. Using these facts, a
little dimensional analysis shows that

3.51 g Ra · 1 mol Ra

226.0254 g Ra
· 1 mol Rn

1 mol Ra
· 22.4 L Rn

1 mol Rn
= 0.348 L Rn. (17)

(b) Carbon-14 dating. Here, we’re given that τ = 5, 730 years. The “tricky” part is that
we don’t know N0 or N(t), but (like the intensity problem earlier) we know their ratio.
The archaeologist measures that

N(t) = 0.80N0. (18)

Substituting this into the half-life equation, we find that

0.80N0 = N0

(
1

2

) t
τ

. (19)

Just like in the intensity problem, we can divide both sides by N0:

0.80 =

(
1

2

) t
τ

. (20)

We can solve for t/τ using logarithms:

t

τ
= log 1

2
0.80. (21)

Multiplying both sides by τ now shows that

t = τ log 1
2
0.80, (22)

which works out to about 1845 years. This is a little younger than the coins claimed
to be, but remember that they could have been put in the box when they were several
years old already.

What about the experimental error? The archaeologist could only determine the
carbon-14 content to within 2%. Supposing that the real value were 78%, then the box
would be

t = τ log 1
2
0.80 = 2054 (23)
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years old. Likewise, you can work out that if the real value were 82%, the box would
only be 1640 years old. This gives an estimate of the error involved—and an indication
of how tricky getting accurate measurements can be!

(c) Supernova light curve. We’re told that nickel-56 has a half-life of 6.077 days, and again
we’re given the ratio of N(t) and N0. This time,

N(t) =
1

64
N0. (24)

Using the half-life equation,

1

64
N0 = N0

(
1

2

) t
τ

, (25)

and dividing both sides by N0,

1

64
=

(
1

2

) t
τ

. (26)

Here, it’s helpful to know the powers of two. You can easily check that 26 = 64. Turing
this upside down, we see that (

1

2

)6

=
1

64
. (27)

Therefore, t
τ

= 6, and

t ≈ 36.5 days. (28)

(d) Bonus. Since we just showed that in 36.5 days the nickel-56 would be down to 1
64

of its
original amount, if all the light came from nickel-56, then the supernova would only be
1
64

as bright. Observing that it remains half its original brightness after 80 days means
that some other elements are responsible.

Problem 7: Einstein’s Equation

According to Einstein’s Special Theory of Relativity, matter and energy are interchange-
able. It is possible to convert an amount of mass into pure energy, which may take the form
of light or other electromagnetic radiation. The exact rule is given by Einstein’s famous
equation,

E = mc2. (29)

Here, c is the speed of light, roughly 3 × 108 meters per second. If m is given in kilograms
and c in meters per second, then E will have units of joules.

(a) Here, m = 1 kg. According to Einstein’s equation, then,

E = (1 kg) ·
(
3× 108 m

s

)2

= 9× 1016J. (30)
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(b) Each photon should carry away half the energy of the original electron-positron pair,
but since the electron and the positron have the same mass, each of the two photons
should have the “mass-energy” of one electron. Here, it’s helpful to use the fourth
column of the particle-data table, which gives masses in terms of eV/c2. The table
tells us that an electron has a mass of 5.11 × 105 eV/c2. By Einstein’s equation, we
would multiply this by c2 to get the energy, but this just cancels the c2 already there!
Knowing that 1MeV = 106eV, we can immediately say that the mass-energy of one
electron is 0.511 MeV. Consequently, each photon has an energy of 0.511 MeV.

You can find the same result by using the mass in kilograms and multiplying by c2 =
9× 1016 m2

s2
. Remember that 1 eV = 1.602× 10−19J.

(c) According to the quantum theory Max Planck helped found, the wavelength of a photon
is inversely proportional to its energy. Typically, we use the Greek letter λ (lambda)
to stand for the wavelength. Planck’s equation says that

E =
hc

λ
(31)

where h is Planck’s constant, a number which experiments show is roughly 6.626×10−34

joule-seconds. There are (at least) two ways to solve this part: we can either plug the
value of E we found earlier into Planck’s equation, or we can combine Planck’s equation
with Einstein’s. The two approaches should give identical answers.

To demonstrate the latter approach, first set the two formulas for E equal to each
other:

mc2 =
hc

λ
. (32)

We can multiply both sides by λ to get

hc = λmc2, (33)

and we can divide both sides by c to find

h = λmc. (34)

Moving the mc to the other side shows that

λ =
h

mc
. (35)

Plugging in all the values we’ve been given, the wavelength works out to

λ ≈ 2.42× 10−12m. (36)

This is far too small see with the naked eye; in fact, it is a gamma ray, with a wavelength
about 100 times smaller than the diameter of a hydrogen atom.
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(d) Astrophysicists estimate that a Type II supernova can release 1044 joules of energy.
We can turn this into a mass measurement by using Einstein’s equation in reverse:

m =
E

c2
≈ 1.11× 1027 kg. (37)

We suppose that the original star had a mass roughly twenty times that of the Sun:

M = 20MSun ≈ 3.9782× 1031 kg. (38)

This is much larger than the mass m which went into making the supernova. To see
exactly how much larger, we compute the ratio:

m

M
=

1.11× 1027 kg

3.9782× 1031 kg
≈ 2.79× 10−5. (39)

In everyday notation, the ratio is 0.0000279, or 0.00279%.
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